David A. Hormuth, II

Research Scientist | Biomedical Engineering + Imaging Science > > Computational Oncology

Publications


Untitled


Untitled


Bayesian Inference of Tissue Heterogeneity for Individualized Prediction of Glioma Growth


Baoshan Liang, J. Tan, Luke Lozenski, D. Hormuth, T. Yankeelov, Umberto Villa, D. Faghihi

ArXiv, 2022


Abstract 2742: A biology-based, mathematical model to predict the response of recurrent glioblastoma to treatment with 186Re-labeled nanoliposomes


Chase J. Christenson, Chengyue Wu, D. Hormuth, Shiliang Huang, A. Brenner, T. Yankeelov

Cancer Research, 2022


Towards patient-specific optimization of neoadjuvant treatment protocols for breast cancer based on image-guided fluid dynamics


Chengyue Wu, D. Hormuth, G. Lorenzo, Angela M. Jarrett, F. Pineda, Frederick M. Howard, G. Karczmar, T. Yankeelov

IEEE Transactions on Biomedical Engineering, 2022


Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology.


Chengyue Wu, G. Lorenzo, D. Hormuth, E. Lima, Kalina P. Slavkova, J. DiCarlo, J. Virostko, Caleb M. Phillips, D. Patt, C. Chung, T. Yankeelov

Biophysical Reviews, 2022


Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy.


D. Hormuth, Maguy Farhat, Chase J. Christenson, Brandon Curl, C. Chad Quarles, C. Chung, T. Yankeelov

Advanced Drug Delivery Reviews, 2022


A generalized framework for model


Inês G. Gonçalves, D. Hormuth, Sandhya Prabhakaran, M. Caleb, Phillips

2022


NIMG-79. SPATIALLY MAPPED PREDICTIONS OF EVOLVING TUMOR RESPONSE OF HIGH-GRADE GLIOMA VIA IMAGE-DRIVEN MATHEMATICAL MODELING


Maguy Farhat, D. Hormuth, Holly Langshaw, Juliana Bronk, Brandon Curl, D. Yadav, R. Upadhyay, A. Elliot, Jodi Goldman, Lily G. Erickson, Wasif Talpur, Maggie Lee, T. Yankeelov, Caroline Chung

Neuro-Oncology, 2022


Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting.


Angela M. Jarrett, Anum S Kazerouni, Chengyue Wu, J. Virostko, A. Sorace, J. DiCarlo, D. Hormuth, David A. Ekrut, D. Patt, B. Goodgame, Sarah Avery, T. Yankeelov

Nature Protocols, 2021


Abstract PS13-18: Predicting breast cancer response to neoadjuvant therapies using a mathematical model individualized with patient-specific magnetic resonance imaging data: Preliminary Results


Angela M. Jarrett, D. Hormuth, A. Syed, Chengyue Wu, J. Virostko, A. Sorace, J. DiCarlo, J. Kowalski, D. Patt, B. Goodgame, Sarah Avery, T. Yankeelov

2021


Abstract 3138: Identification of therapy-sensitive tumor phenotypes using quantitative MRI habitats in a preclinical model of HER2+ breast cancer


Anum S Kazerouni, D. Hormuth, Tessa Davis, Meghan J. Bloom, J. Virostko, T. Yankeelov, A. Sorace

Tumor Biology, 2021


Modeling of Glioma Growth With Mass Effect by Longitudinal Magnetic Resonance Imaging


B. Tunç, David A. Hormuth II, G. Biros, T. Yankeelov

IEEE Transactions on Biomedical Engineering, 2021


RADT-14. TOWARDS IMAGE-GUIDED MODELING OF PATIENT-SPECIFIC RHENIUM-186 NANOLIPOSOME DISTRIBUTION VIA CONVECTION-ENHANCED DELIVERY FOR GLIOBLASTOMA MULTIFORME


Chengyue Wu, D. Hormuth, Chase J. Christenson, M. Abdelmalik, W. Phillips, Thomas Hughes, A. Brenner, T. Yankeelov

Neuro-Oncology, 2021


Abstract 222: Towards patient-specific optimization of neoadjuvant treatment protocols for breast cancer based on image-based fluid dynamics


Chengyue Wu, D. Hormuth, F. Pineda, G. Karczmar, T. Yankeelov

Bioinformatics and Systems Biology, 2021


An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom


Chengyue Wu, D. Hormuth, T. Easley, V. Eijkhout, F. Pineda, G. Karczmar, T. Yankeelov

Medical Image Anal., 2021


Math, magnets, and medicine: enabling personalized oncology


D. Hormuth, Angela M. Jarrett, G. Lorenzo, E. Lima, Chengyue Wu, C. Chung, D. Patt, T. Yankeelov

Expert Review of Precision Medicine and Drug Development, 2021


Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data


D. Hormuth, Caleb M. Phillips, Chengyue Wu, E. Lima, G. Lorenzo, P. Jha, Angela M. Jarrett, J. Oden, T. Yankeelov

Cancers, 2021


Quantitative in vivo imaging to enable tumor forecasting and treatment optimization


G. Lorenzo, D. Hormuth, Angela M. Jarrett, E. Lima, Shashank Subramanian, G. Biros, J. Oden, T. Hughes, T. Yankeelov

ArXiv, 2021


A time-resolved experimental-mathematical model for predicting the response of glioma cells to single-dose radiation therapy.


Junyan Liu, D. Hormuth, Tessa Davis, Jiancheng Yang, M. McKenna, Angela M. Jarrett, H. Enderling, A. Brock, T. Yankeelov

Integrative Biology, 2021


Disposable point-of-care portable perfusion phantom for quantitative DCE-MRI.


Martin D Holland, Andrés Morales, Sean Simmons, Brandon Smith, S. Misko, Xiaoyu Jiang, D. Hormuth, Chase J. Christenson, R. Koomullil, D. Morgan, Yufeng Li, Junzhong Xu, T. Yankeelov, Harrison Kim

Medical physics, 2021


Patient specific, imaging-informed modeling of rhenium-186 nanoliposome delivery via convection-enhanced delivery in glioblastoma multiforme


Ryan T Woodall, David A. Hormuth II, Chengyue Wu, M. Abdelmalik, W. Phillips, A. Bao, T. Hughes, A. Brenner, T. Yankeelov

Biomedical engineering and physics express, 2021


Multi‐Site Concordance of Diffusion‐Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness


S. McGarry, M. Brehler, J. Bukowy, A. Lowman, S. Bobholz, S. Duenweg, A. Banerjee, S.L. Hurrell, D. Malyarenko, T. Chenevert, Yue Cao, Yuan Li, D. You, A. Fedorov, L. Bell, C. Quarles, M. Prah, K. Schmainda, B. Taouli, E. LoCastro, Y. Mazaheri, A. Shukla-Dave, T. Yankeelov, D. Hormuth, A. Madhuranthakam, K. Hulsey, Kurt Li, Wei Huang, Wei Huang, M. Muzi, M. Jacobs, M. Solaiyappan, S. Hectors, T. Antic, G. Paner, Watchareepohn Palangmonthip, K. Jacobsohn, M. Hohenwalter, Petar Duvnjak, Michael Griffin, W. See, M. Nevalainen, K. Iczkowski, P. LaViolette

Journal of magnetic resonance imaging : JMRI, 2021


Optimal Control Theory for Personalized Therapeutic Regimens in Oncology: Background, History, Challenges, and Opportunities


Angela M. Jarrett, D. Faghihi, D. Hormuth, E. Lima, J. Virostko, G. Biros, D. Patt, T. Yankeelov

Journal of Clinical Medicine, 2020


Evaluating patient-specific neoadjuvant regimens for breast cancer via a mathematical model constrained by quantitative magnetic resonance imaging data12


Angela M. Jarrett, D. Hormuth, Chengyue Wu, Anum S Kazerouni, David A. Ekrut, J. Virostko, A. Sorace, J. DiCarlo, J. Kowalski, D. Patt, B. Goodgame, Sarah Avery, T. Yankeelov

Neoplasia, 2020


Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer


Angela M. Jarrett, D. Hormuth, V. Adhikarla, P. Sahoo, D. Abler, L. Tumyan, D. Schmolze, J. Mortimer, R. Rockne, T. Yankeelov

medRxiv, 2020


Abstract 5485: Patient-specific neoadjuvant regimens for breast cancer identifiedviaimage-driven mathematical modeling


Angela M. Jarrett, E. Lima, D. Hormuth, Chengyue Wu, J. Virostko, A. Sorace, J. DiCarlo, D. Patt, B. Goodgame, Sarah Avery, T. Yankeelov

2020


Integrating Quantitative Assays with Biologically Based Mathematical Modeling for Predictive Oncology


Anum S Kazerouni, M. Gadde, Andrea L Gardner, D. Hormuth, Angela M. Jarrett, Kaitlyn E. Johnson, E. Lima, G. Lorenzo, Caleb M. Phillips, A. Brock, T. Yankeelov

iScience, 2020


Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics


Chengyue Wu, D. Hormuth, Todd A. Oliver, F. Pineda, G. Lorenzo, G. Karczmar, R. Moser, T. Yankeelov

IEEE Transactions on Medical Imaging, 2020


Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer


Angela M. Jarrett, Alay Shah, Meghan J. Bloom, M. McKenna, D. Hormuth, T. Yankeelov, A. Sorace

Scientific Reports, 2019


Mechanism-Based Modeling of Tumor Growth and Treatment Response Constrained by Multiparametric Imaging Data.


D. Hormuth, Angela M. Jarrett, E. Lima, M. McKenna, D. Fuentes, T. Yankeelov

JCO Clinical Cancer Informatics, 2019


Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI


D. Hormuth, Angela M. Jarrett, Xinzeng Feng, T. Yankeelov

Annals of Biomedical Engineering, 2019


Translating preclinical MRI methods to clinical oncology


D. Hormuth, A. Sorace, J. Virostko, R. Abramson, Z. Bhujwalla, P. Enriquez-Navas, R. Gillies, J. Hazle, R. Mason, C. Quarles, J. Weis, J. Whisenant, Junzhong Xu, T. Yankeelov

Journal of Magnetic Resonance Imaging, 2019


Quantitative imaging using MRI


D. Hormuth, J. Virostko, A. Stokes, A. Dula, A. Sorace, J. Whisenant, J. Weis, C. Quarles, M. Miga, T. Yankeelov

Radiomics and Radiogenomics, 2019


Quantitative imaging to guide mechanism-based modeling of cancer


D. Hormuth, M. McKenna, T. Yankeelov

Radiomics and Radiogenomics, 2019


The 2019 mathematical oncology roadmap


R. Rockne, A. Hawkins-Daarud, K. Swanson, J. Sluka, J. Glazier, P. Macklin, D. Hormuth, Angela M. Jarrett, E. Lima, J. Tinsley Oden, G. Biros, T. Yankeelov, K. Curtius, I. Al Bakir, D. Wodarz, N. Komarova, Luis Aparicio, M. Bordyuh, R. Rabadán, S. Finley, H. Enderling, J. Caudell, E. Moros, A. Anderson, R. Gatenby, Artem Kaznatcheev, P. Jeavons, Nikhil P. Krishnan, J. Pelesko, Raoul R. Wadhwa, N. Yoon, D. Nichol, A. Marusyk, M. Hinczewski, Jacob G. Scott

Physical Biology, 2019


SCIDOT-38. DEVELOPMENT OF AN IMAGE-INFORMED MATHEMATICAL MODEL OF CONVECTION-ENHANCED DELIVERY OF NANOLIPOSOMES FOR INDIVIDUAL PATIENTS


Ryan T Woodall, D. Hormuth, M. Abdelmalik, Chengyue Wu, Xinzeng Feng, W. Phillips, A. Bao, T. Hughes, A. Brenner, T. Yankeelov

Neuro-Oncology, 2019


Integrating quantitative imaging and computational modeling to predict the spatiotemporal distribution of 186Re nanoliposomes for recurrent glioblastoma treatment


Ryan T Woodall, D. Hormuth, M. Abdelmalik, Chengyue Wu, Xinzeng Feng, W. Phillips, A. Bao, T. Hughes, A. Brenner, T. Yankeelov

Medical Imaging, 2019


Multi-Scale Imaging to Enable Multi-Scale Modeling for Predicting Tumor Growth and Treatment Response


T. Yankeelov, D. Hormuth, Angela M. Jarrett, E. Lima, Chengyue Wu, Ryan T Woodall, C. Philips

Biophysical Journal, 2019


Mathematical models of tumor cell proliferation: A review of the literature


Angela M. Jarrett, E. Lima, D. Hormuth, M. McKenna, Xinzeng Feng, David A. Ekrut, A. C. M. Resende, A. Brock, T. Yankeelov

Expert Review of Anticancer Therapy, 2018


Quantitative analysis of vascular properties derived from ultrafast DCE‐MRI to discriminate malignant and benign breast tumors


Chengyue Wu, F. Pineda, D. Hormuth, G. Karczmar, T. Yankeelov

Magnetic Resonance in Medicine, 2018


Mechanically Coupled Reaction-Diffusion Model to Predict Glioma Growth: Methodological Details.


D. Hormuth, Stephanie L. Eldridge, J. Weis, M. Miga, T. Yankeelov

Methods in molecular biology, 2018


Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers


Hesham Rachel B. Abdallah S. R. Musaddiq J. Yao Kimberly Elhalawani Ger Mohamed Awan Ding Li Fave Beers Dri, H. Elhalawani, R. Ger, A. Mohamed, M. Awan, Yao Ding, Kimberly Li, X. Fave, Andrew Beers, B. Driscoll, David A. Hormuth II, P. V. van Houdt, R. He, Shouhao Zhou, K. Mathieu, Heng Li, C. Coolens, C. Chung, J. Bankson, Wei Huang, Jihong Wang, V. Sandulache, S. Lai, R. Howell, R. Stafford, T. Yankeelov, U. A. van der Heide, S. Frank, D. Barboriak, J. Hazle, L. Court, Jayashree Kalpathy-Cramer, C. Fuller

Scientific Data, 2018


Erratum: Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers


Hesham Rachel B. Abdallah S.R. Musaddiq J. Yao Kimberly X Elhalawani Ger Mohamed Awan Ding Li Fave Beers Dri, H. Elhalawani, R. Ger, A. Mohamed, M. Awan, Yao Ding, Kimberly Li, X. Fave, Andrew Beers, B. Driscoll, David A. Hormuth II, P. V. van Houdt, R. He, Shouhao Zhou, K. Mathieu, Heng Li, C. Coolens, C. Chung, J. Bankson, Wei Huang, Jihong Wang, V. Sandulache, S. Lai, R. Howell, R. Stafford, T. Yankeelov, U. A. van der Heide, S. Frank, D. Barboriak, J. Hazle, L. Court, Jayashree Kalpathy-Cramer, C. Fuller

Scientific data, 2018


Publisher Correction: A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations


Rachel B. Abdallah S. R. Musaddiq J. Yao Kimberly Xenia J Ger Mohamed Awan Ding Li Fave Beers Driscoll Elhal, R. Ger, A. Mohamed, M. Awan, Yao Ding, Kimberly Li, X. Fave, Andrew Beers, B. Driscoll, H. Elhalawani, D. Hormuth, P. V. Houdt, R. He, Shouhao Zhou, K. Mathieu, Heng Li, C. Coolens, C. Chung, J. Bankson, Wei Huang, Jihong Wang, V. Sandulache, S. Lai, R. Howell, R. Stafford, T. Yankeelov, U. A. van der Heide, S. Frank, D. Barboriak, J. Hazle, L. Court, Jayashree Kalpathy-Cramer, C. Fuller

Scientific Reports, 2018


The effects of intravoxel contrast agent diffusion on the analysis of DCE‐MRI data in realistic tissue domains


Ryan T Woodall, Stephanie L. Barnes, D. Hormuth, A. Sorace, C. Quarles, T. Yankeelov

Magnetic Resonance in Medicine, 2018


Abstract A09: Predicting response to whole brain radiotherapy in a murine model of glioma


D. Hormuth, J. Weis, Stephanie B. Eldridge, M. Miga, E. Rericha, V. Quaranta, T. Yankeelov

2017


A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth


D. Hormuth, J. Weis, Stephanie L. Barnes, M. Miga, E. Rericha, V. Quaranta, T. Yankeelov

Journal of the Royal Society Interface, 2017


Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer.


D. Hormuth, J. Weis, Stephanie L. Barnes, M. Miga, V. Quaranta, T. Yankeelov

International Journal of Radiation Oncology, Biology, Physics, 2017


Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data.


E. Lima, J. Oden, B. Wohlmuth, A. Shahmoradi, D. Hormuth, T. Yankeelov, L. Scarabosio, T. Horger

Computer Methods in Applied Mechanics and Engineering, 2017


Abstract A11: Calibration, selection and validation of tumor growth models


E. Lima, R. C. Almeida, D. Hormuth, T. Yankeelov, J. Oden

2017


A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations


Rachel B. Abdallah S. R. Musaddiq J. Yao Kimberly Xenia J Ger Mohamed Awan Ding Li Fave Beers Driscoll Elhal, R. Ger, A. Mohamed, M. Awan, Yao Ding, Kimberly Li, X. Fave, Andrew Beers, B. Driscoll, H. Elhalawani, D. Hormuth, P. V. Houdt, R. He, Shouhao Zhou, K. Mathieu, Heng Li, C. Coolens, C. Chung, J. Bankson, Wei Huang, Jihong Wang, V. Sandulache, S. Lai, R. Howell, R. Stafford, T. Yankeelov, U. Heide, S. Frank, D. Barboriak, J. Hazle, L. Court, Jayashree Kalpathy-Cramer, C. Fuller

Scientific Reports, 2017


Selection, calibration, and validation of models of tumor growth.


E. Lima, J. Oden, D. Hormuth, T. Yankeelov, R. C. Almeida

Mathematical Models and Methods in Applied Sciences, 2016


Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data


David A. Hormuth II, J. Weis, Stephanie L. Barnes, M. Miga, E. Rericha, V. Quaranta, T. Yankeelov

Physical Biology, 2015


In vivo imaging to initialize a biophysical model of tumor growth: Preliminary results


D. Hormuth, T. Yankeelov

2013 Biomedical Sciences and Engineering Conference (BSEC), 2013


Clinically Relevant Modeling of Tumor Growth and Treatment Response


T. Yankeelov, N. Atuegwu, D. Hormuth, J. Weis, Stephanie L. Barnes, M. Miga, E. Rericha, V. Quaranta

Science Translational Medicine, 2013


Optimization of qBOLD Methods for the Assessment of Mouse Renal Oxygenation


Feng Wang, D. Hormuth, Keiko Takahashi, J. Gore, R. Harris, Takamune Takahashi, C. Quarles

2012


Towards real-time tracking of anatomic features for HIFU beam steering


D. Hormuth, B. Zappia, A. Holbrook, K. Butts-Pauly, C. Dumoulin

2009


Publications


Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer


Anum S Kazerouni, D. Hormuth, Tessa Davis, Meghan J. Bloom, Sarah Mounho, G. Rahman, J. Virostko, T. Yankeelov, A. Sorace

Cancers, 2022


Conference presentations and proceedings




Effect of chemoradiation on high-grade gliomas can be forecasted by mid-treatment images via image-driven mathematical modeling


David Hormuth II, Maguy Farhat, Julianna Bronk, Holly Langshaw, Thomas E Yankeelov, Caroline Chung

Proc. Intl. Soc. Mag. Reson. Med., vol. 31, Toronto, Ontario, 2023 May, p. 0136

Share



Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in